FACULTY OF ENGINEERING & TECHNOLOGY

First Year Bachelor of Engineering

Course Code: 102000211

Course Title: LINEAR ALGEBRA, VECTOR CALCULUS AND ODE

Type of Course: Basic Science Course

Course Objectives: The course is intended to develop computational proficiency involving procedures in Matrices, Linear algebra, Vector Calculus and Differential Calculus which are useful to all engineering disciplines.

Teaching & Examination Scheme:

Contact hours per week			Course	Exam	ination Ma	arks (Maxi	mum / Pa	ssing)
Locturo	Tutorial	Practical	Credits	Inte	rnal	Exte	rnal	Total
Lecture	1 utoriai	Plattitai		Theory	J/V/P*	Theory	J/V/P*	Total
3	2	0	4	40 / 14	20 / 7	60 / 21	30 / 10	150 / 52

^{*} J: Jury; V: Viva; P: Practical

Detailed Syllabus:

Sr.	Contents Hours					
1	Applications of Matrices:	10				
	Matrices and Elementary Row Operations, Echelon and Reduced Row Echelon					
	forms of a Matrix, Solutions of System of Nonhomogeneous and					
	Homogeneous Linear Equations: Gaussian Elimination and Gauss-Jordan					
	Method, Inverse of a Matrix by Gauss-Jordan Elimination Method, Rank of a					
	Matrix, Eigenvalues and Eigenvectors of a Matrix, Caley-Hamilton Theorem,					
	Diagonalization					
2	Linear Algebra:	8				
	Vector Spaces, Subspaces of a Vector Space, Linear Independence and					
	Dependence of Vectors, Span of a Set of Vectors, Basis and Dimension					
3	Vector Calculus:					
	Vector and Scalar Functions and Fields, Derivatives, Gradient of a Scalar Field,					
	Directional Derivative, Divergence of a Vector Field, Curl of a Vector Field,					
	Line Integrals, Line Integrals Independent of Path, Green's Theorem in the					
	Plane (Without Proof), Surface Integrals, Divergence Theorem of Gauss					
	(Without Proof), Stoke's Theorem (Without Proof)					
4	Differential Equations of First Order:	5				
	Bernoulli's Equation, Exact Differential Equations, Equations Reducible to					
	Exact Equations, Clairaut's Equation					

5	Higher Order Ordinary Differential Equations:	12
	Linear Differential Equations with Constant Coefficients, Inverse Operator,	
	Rules for Finding Particular Integral when X=eax, sin(ax + b), cos(ax+b), xm,	
	eaxV, V being a function of x. Method of Variation of Parameters, Method of	
	Undetermined Coefficients, Euler – Cauchy differential equations, Legender's	
	Linear Fountion	

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks		S	R: Remembering; U: Understanding; A: Application,			
R	U	A	N	Е	С	N: Analyze; E: Evaluate; C: Create
20%	40%	30%	10%	0%	0%	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

1	Advanced Engineering Mathematics, Erwin Kreyszig, Wiley Student Edition
2	Higher Engineering Mathematics, Dr. B.S. Grewal, Khanna Publishers
3	Engineering Mathematics Vol II S S Sastry, Prentice Hall of India
4	Elementary Linear Algebra Howard Anton, John Wiley & Sons
5	Introduction to Engineering Mathematics- Vol II H K Dass, S Chand Publication

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage
CO-1	Use the matrix methods and certain techniques to solve the system of	20
	linear equations and to find eigen values, eigen vectors of a matrix to	
	check whether it is diagonalizable.	
CO-2	Understand the abstract notions of vector space and the dimensionality	20
	of it.	
CO-3	Learn different notions of vector and scalar fields with their properties.	30
	Understanding the major theorems (Green's, Stokes', Gauss') and some	
	applications of these theorems	
CO-4	Apply some methods of differential equations like Bernoulli's Equation,	10
	Exact, Clairaut's which remains to study at their plus two level.	
CO-5	To find solution of higher-order linear differential equations of constant	20
	coefficients by using different methods.	

List of Practicals / Tutorials:

1	System of Linear Equations- Non-Homogeneous and Homogeneous
2	Rank of a matrix and inverse of a matrix by Gauss Jordan Method
3	Eigen Values and Eigen Vectors. Cayley's Hamilton Theorem and it's applications
4	Diagonalization of a matrix.
5	Vector Spaces and Sub Spaces
6	Linear independence and linear independence. Span of a vector space and Basis, Dimension
7	Gradient, directional derivative, divergence, curl
8	Line integral. Green's Theorem, Gauss Divergence Theorem and Stoke's Theorem
9	First Order differential equations- Bernoulli's Equation, Exact, Clairaut's
10	Higher order differential equations with constant coefficients having standard functions as
	X given in the syllabus
11	Method of Variation of Parameters, Method of Undetermined Coefficients, Legender's Linear
	Equation

Sup	Supplementary learning Material:			
1	Lecture Note			
2	NPTEL Video Lectures Matrices and Linear Algebra:			
	https://nptel.ac.in/courses/111106051/			
3	NPTEL Video Lectures Differential Equations https://nptel.ac.in/courses/111106100/			
4	NPTEL Vector Calculus https://nptel.ac.in/courses/111/105/111105122/			

Curriculum Revision:			
Version:	1		
Drafted on (Month-Year):	Apr-20		
Last Reviewed on (Month-Year):	Jul-20		
Next Review on (Month-Year):	Apr-22		